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FIELD‐LEVEL TARGETING USING SWAT:
MAPPING OUTPUT FROM HRUS TO FIELDS AND

ASSESSING LIMITATIONS OF GIS INPUT DATA

P. Daggupati,  K. R. Douglas‐Mankin,  A. Y. Sheshukov,  P. L. Barnes,  D. L. Devlin

ABSTRACT. Soil erosion from agricultural fields is a fundamental water quality and quantity concern throughout the U.S.
Watershed models can help target general areas where soil conservation measures are needed, but they have been less
effective at making field‐level recommendations. The objectives of this study were to demonstrate a method of field‐scale
targeting using ArcSWAT and to assess the impact of topography, soil, land use, and land management source data on
field‐scale targeting results. The study was implemented in Black Kettle Creek watershed (7,818 ha) in south‐central Kansas.
An ArcGIS toolbar was developed to post‐process SWAT hydrologic response unit (HRU) output to generate sediment yields
for individual fields. The relative impact of each input data source on field‐level targeting was assessed by comparing ranked
lists of fields on the basis of modeled sediment‐yield density (Mg ha‐1) from each data‐source scenario. Baseline data of
field‐reconnaissance land use and management were compared to NASS and NLCD data, 10 m DEM topography were
compared to 30 m, and SSURGO soil data were compared to STATSGO. Misclassification of cropland as pasture by NASS
and aggregation of all cropland types to a single category by NLCD led to as much as 75% and 82% disagreement,
respectively, in fields identified as having the greatest sediment‐yield densities. Neither NASS nor NLCD data include land
management data (such as terraces, contour farming, or no‐till), but such inclusion changed targeted fields by as much as
71%. Impacts of 10 m versus 30 m DEM topographic data and STATSGO versus SSURGO soil data altered the fields targeted
as having the highest sediment‐yield densities to a lesser extent (about 10% to 25%). SWAT results post‐processed to field
boundaries were demonstrated to be useful for field‐scale targeting. However, use of incorrect source data directly translated
into incorrect field‐level sediment‐yield ranking, and thus incorrect field targeting. Sensitivity was greatest for land use data
source, followed closely by inclusion of land management practices, with less sensitivity to topographic and soil data sources.
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oil erosion and sedimentation are fundamental water
quality and quantity concerns throughout the U.S.
Soil erosion from agricultural fields is a major con‐
tributor of sediment yields into surface waters. Wa‐

tershed models, both empirical and process‐based, are used
for watershed management, planning, development, and best
management practice (BMP) implementation. Process‐based
models, such as the Soil and Water Assessment Tool (SWAT;
Arnold et al., 1998), have been used widely to assess the ex‐
tent of soil erosion as affected by agricultural land use and
management  practices at both field and watershed scales
(Pandey et al., 2007).

Submitted for review in July 2010 as manuscript number SW 8669;
approved for publication by the Soil & Water Division of ASABE in
February 2011.

Contribution No. 10‐186‐J from the Kansas Agricultural Experiment
Station, Manhattan, Kansas.

The authors are Prasad Daggupati, ASABE Member, Graduate
Research Assistant, Kyle R. Douglas‐Mankin, ASABE Member
Engineer, Professor, Aleksey Y. Sheshukov, ASABE Member Engineer,
Research Assistant Professor, Philip L. Barnes, ASABE Member
Engineer, Associate Professor, Department of Biological and Agricultural
Engineering, and Daniel L. Devlin, Professor, Department of Agronomy,
Kansas State University, Manhattan, Kansas. Corresponding author:
Kyle R. Douglas‐Mankin, Department of Biological and Agricultural
Engineering, Kansas State University, 129 Seaton Hall, Manhattan, KS
66503; phone: 785‐532‐2911; fax: 785‐532‐5825; e‐mail: krdm@ksu.edu.

Strategic targeting and prioritization of areas that need
BMP implementation is the key to effective watershed man‐
agement (Mankin et al., 2004; Diebel et al., 2008). Identify‐
ing fields or critical source areas (CSAs) with the greatest
sediment‐yield potential and targeting these fields or areas
for educational and implementation efforts would efficiently
allocate time, money, and educational resources (Pionke et
al., 2000; Strauss et al., 2007; White et al., 2009; Busteed et
al., 2009; Tuppad et al., 2010). Targeting can be separated
into two phases: (1) an assessment phase, in which BMPs
and/or source areas are identified and prioritized, and (2) a
planning phase, in which a stakeholder group considers
BMPs and source areas targeted by the assessment process
along with other information to target actions, such as educa‐
tional efforts or financial support. In Kansas, watershed mod‐
eling has been widely used in the assessment targeting phase
to quantify and prioritize pollutant yields from BMPs and
source areas (Devlin et al., 2005; Nejadhashemi et al., 2011).
In this study, the term “targeting” generally refers to this
assessment‐phase targeting.

Over the past few decades, empirical‐based and process‐
based models have been used widely to identify CSAs. Tim
et al. (1992) integrated simulation modeling with a geograph‐
ic information system (GIS) to identify CSAs in Nomini
Creek watershed in Virginia. Sivertun et al. (1998), Sivertun
and Prange (2003), and Barnes et al. (2009) used GIS and a
Revised Universal Soil Loss Equation (RUSLE) (Renard et
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al., 1991) based model to identify CSAs in which to imple‐
ment conservation practices. Tripathi et al. (2003), White et
al. (2009), and Busteed et al. (2009) used the SWAT model
to identify and prioritize CSAs.

The SWAT model can be effective for identifying CSAs
because it uses a distributed hydrologic modeling approach
that utilizes spatially distributed climate, topography, soils,
land use, and land management practices (Gassman et al.,
2007; White et al., 2009). SWAT subdivides the watershed
into subwatersheds and further into hydrologic response units
(HRUs), areas within a subwatershed that have unique com‐
binations of land use, soil, and slope. The HRU‐level output
can be referenced to the original land areas having the specif‐
ic characteristics of each HRU and thus can be used to identi‐
fy CSAs that exceed a threshold pollutant yield value
(Busteed et al., 2009; Ghebremichael et al., 2010). HRUs
may spread across several fields, or a given field may contain
several HRUs, each with different pollutant yield potential
(fig. 1). However, the management unit for crop BMP imple‐
mentation typically is the field, not the HRU, because the en‐
tire area within a field receives the same crop type, tillage,
and management practices. Farmers or landowners typically
are not willing to manage field subareas differently. There‐
fore, HRU‐level output must be aggregated or disaggregated
to produce field‐level output when the intention is to use the
modeled information for practical targeting of BMP imple‐
mentation.

The SWAT model requires input data and parameters that
describe the characteristics and distribution of topography,
soils, land cover, and weather within the watershed. Wa‐
tershed modelers can readily download these input data from
various data sources. The SWAT model is sensitive to the
quality of land use, topographic, and soil data and the prepro‐
cessing techniques used to prepare and input these data (Ro-

Figure 1. Locations of HRU areas (in red) with the greatest SWAT‐
estimated sediment yield in relation to field boundaries.

manowicz et al., 2005). Inamdar and Naumov (2006) used
SWAT to determine annual sediment yields and identified
CSAs of erosion for the Buffalo River watershed. They used
a land use/land cover (LULC) layer downloaded from the
EPA BASINS website and manually updated the LULC layer
by using 2002 digital ortho quarter quads. They concluded
that the accuracy and resolution of the cropland areas delin‐
eated on the LULC layers are critical for reliable sediment
predictions. Zhan et al. (2009) used the SWAT model to simu‐
late runoff and sediment yield by changing LULC layers
(from 1990 and 2000) in the Chao River catchment in China.
Their results showed that the LULC change had little influ‐
ence on runoff but had more influence on sediment yield.

Chaubey et al. (2005) evaluated the effect of digital eleva‐
tion model (DEM) resolution (from 30 to 1000 m) on SWAT
model predictions. They found that the DEM resolution af‐
fected the watershed delineation, stream network and subba‐
sin classification, and the model predictions. Dixon and Earls
(2009) used the SWAT model to test the sensitivity of DEM
resolution (30, 90, and 300 m) and resampling techniques in
predicting streamflow. They concluded that model predic‐
tions were sensitive to DEM resolution, and resampling may
not be an adequate technique for modeling streamflow using
the distributed watershed model. Chaplot (2005) determined
the impact of DEM resolution (20 to 500 m) and soil map
scale (1:25,000; 1:250,000; and 1:500,000 scale) by using
SWAT to simulate runoff, sediment, and NO3‐N loads. They
concluded that a DEM resolution of 50 m was required to
simulate watershed loads, and decreasing the DEM resolu‐
tion beyond 50 m affected the predictions of nitrogen and sed‐
iment yields. They also concluded that the detailed soil map
needed to be considered to accurately estimate the watershed
loads. Wang and Melesse (2006) and Peschel et al. (2006)
evaluated the effects of soil layer (SSURGO and STATSGO)
on modeling predictions and found that the SSURGO soil
layer predicted streamflow better than the STATSGO soil
layer.

Heathman et al. (2009) used SWAT to evaluate the impact
of different combinations of GIS‐based soil data (SSURGO
and STATSGO) and land use data (GAP and NASS) on
streamflow prediction. The two land use layers studied re‐
sulted in greater differences in predicted streamflow than the
two soil layers studied. Veith et al. (2008) used SWAT to as‐
sess high and low resolution land use management data on
flow, sediment concentration, and P concentration at the out‐
let of a small watershed (<100 ha). Their results showed that
the high‐resolution data can enable the model to provide
valuable water quality information, while the low‐resolution
data can be used for initial problem‐solving efforts. Research
has evaluated the difference in modeled watershed‐scale
yields of flow, sediment, and nutrients resulting from input
data having a range of spatial resolutions. In these studies,
changes in spatial representation of topography, soils, and
land use were assessed by comparing impacts on watershed‐
scale yields. However, very few studies have assessed the im‐
pact of spatial data resolution on the representation or
modeling accuracy of watershed models at the individual
field scale.

Therefore, objectives of this study were to (1) demonstrate
the use of ArcSWAT output mapped at the field scale for con‐
servation practice targeting, and (2) assess the impact of to‐
pography, soil, land use, and land management source data on
field‐scale targeting results. This study focused on evaluating
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Figure 2. Field boundaries and stream network for Black Kettle Creek
watershed.

common datasets that were readily downloadable from the
internet or manually prepared.

STUDY AREA AND PROJECT SETTING
The city of Wichita in south‐central Kansas undertook the

Equus Beds Aquifer Storage and Recovery (ASR) project,
which diverted water from the Little Arkansas River wa‐
tershed through bank storage (diversion) wells during high
flows. In 2007, approximately 1.3 million m3 (350 million
gal) of water was injected into the Equus Beds aquifer. How‐
ever, for every 3,800 m3 (1 million gal) of water injected, an
average of 6.4 Mg (7 tons) of sediment needed to be removed
prior to injection (Steele, 2006), representing a substantial
treatment expense. Steele (2006) conducted a water quality
monitoring study and concluded that the Black Kettle Creek
subwatershed of the Little Arkansas River watershed deliv‐
ered the greatest sediment yields compared with other sub‐
watersheds. This led to initiation of a project with the goal of
reducing sediment yields from Black Kettle Creek watershed
by cost‐sharing implementation of targeted conservation
practices in agricultural fields with the greatest soil erosion
potential.

Black Kettle Creek watershed is a 7,818 ha (19,295 acres)
subwatershed of the Little Arkansas River watershed
(360,000 ha) located within McPherson and Harvey counties
in south‐central Kansas (fig. 2). Primary land uses in the wa‐
tershed are cropland (84% of total area) followed by range‐
land (12%), urban area (2%), and forests (2%). The cropland
is predominantly wheat, followed by sorghum, soybeans and
corn. The major pollutant concerns in this watershed are sedi‐
ment and phosphorus (Steele, 2006).

Figure 3. Slope classifications (10 m and 30 m DEM) for Black Kettle
Creek watershed.

METHODS
The Soil and Water Assessment Tool (SWAT), a widely

used, watershed‐scale, process‐based model developed by
the USDA Agricultural Research Service (ARS) (Arnold et
al., 1998; Neitsch et al., 2005; Gassman et al., 2007; Douglas‐
Mankin et al., 2010), was used to identify and target the spe‐
cific fields with the greatest soil erosion potential.

SWAT INPUT DATA

Watershed and subwatershed boundaries were delineated
with U.S. Geological Survey 10 m × 10 m DEM (USGS,
1999) or 30 m × 30 m DEM (USGS, 1999) depending on the
modeling scenario. Watershed and subwatershed boundaries
for all model runs were set using a minimum stream‐
definition area of 500 ha, which defined nine subbasins with
the 10 m DEM and seven subbasins with the 30 m DEM.
Slope categories of 0% to 2%, 2% to 4%, and >4% were used
for all the modeling scenarios to capture low, medium, and
high slopes in the watershed (fig. 3). Relative to the 10 m
DEM, the 30 m DEM overestimated the watershed area in the
0% to 2% slope class by 2.1% but underestimated the area in
the 2% to 4% class by 1.9% and underestimated the area in
the >4% class by 49.8%, although the total area in the >4%
class was less than 5% of the watershed area in both DEM
cases (table 1).

Soil data were derived from either the Soil Survey Geo‐
graphic (SSURGO) database (USDA‐NRCS, 2005) or the
State Soil Geographic (STATSGO) database (USDA‐NRCS,
1994) depending on the modeling scenario (fig. 4). The
SSURGO soil layer was prepared using a SSURGO process-
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Table 1. Characteristics of 10 m and 30 m
DEM data for Black Kettle Creek watershed.

Slope
Category

(%)

10 m DEM 30 m DEM

Area
(ha)

Mean
Slope
(%)

Overall
Slope
(%)

Area
(ha)

Mean
Slope
(%)

Overall
Slope
(%)

>4 281 5.17
2.58

141 4.89
2.182‐4 1027 2.7 1007 2.6

0‐2 6487 0.96 6620 0.97

Table 2. Characteristics of SSURGO and STATSGO
soil data for Black Kettle Creek watershed.

Parameter

Area (ha)

SSURGO STATSGO

Hydrologic
soil group

A 2.8 0
B 841.5 0
C 4778.1 5265.3
D 2186.4 2504.4

ULSE K

0.37 6965.8 7796.4
0.32 768.8 0
0.28 50.1 0
0.20 22.2 0
0.01 2.8 0

Figure 4. Soil classifications (SSURGO and STATSGO) for Black Kettle
Creek watershed.

ing tool (Sheshukov et al., 2009) that converted the SSURGO
data to a format compatible with ArcSWAT. The soil series
in the SSURGO database for the Black Kettle Creek wa‐
tershed included a broader range of hydrologic soil groups
and USLE K values than the soil associations in the STATS‐
GO database. The STATSGO soil data overestimated the wa‐
tershed areas in the higher‐runoff hydrologic soil groups
(C�and D) and in the highest erosivity class (K of 0.37) rela‐
tive to the SSURGO data (table 2).

The LULC data were derived from the 2001 National
Land Cover Dataset (Homer et al., 2004), the USDA National
Agricultural Statistical Service (USDA‐NASS, 2008), or
from field reconnaissance survey data depending on the mod‐
eling scenario (fig. 5). The NLCD land cover was compiled
for all 50 states utilizing Landsat 5 and Landsat 7 imagery
centered on a nominal collection year of 2001 (Yang, 2008).
The NASS land cover was produced for each state utilizing
the Thematic Mapper (TM) instrument on Landsat 5, Landsat
7 ETM gap‐filled data, and Indian Remote Sensing (IRS) Ad‐
vanced Wide Field Sensor (AWiFS) on Resourcesat‐1. The
NASS land cover was developed based on satellite imagery
taken during mid‐July of each year (Mueller and Seffrin,
2006). The NASS land cover data are assessed mostly for
agricultural  areas, and NLCD land cover data are suggested
for use in non‐agricultural areas (www.nass.usda.gov/re‐
search/Cropland/metadata/metadata_ks08.htm).  The meta‐
data of the NASS land cover (USDA‐NASS, 2008) used in
this study reported classification errors (omission and com‐
mission errors) of 9.68% and 12.52% for sorghum, 8.74% and
6.93% for soybeans, and 4.48% and 4.48% for winter wheat.
The NLCD land cover data distinguished 21 different data
classes, while the NASS land cover data distinguished
84�classes; however, the non‐agricultural classes (e.g.,�
rangeland, pasture, woody wetlands) in the NASS land cover
data are derived from the NLCD land cover data.

In the case of field reconnaissance survey data, the field
data were developed using the common land use unit (CLU)
field boundary shapefile, obtained from the USDA Natural
Resource Conservation Service online geospatial data gate‐
way (USDA‐NRCS, 2004). Each field's land cover was
manually edited based on a field‐by‐field reconnaissance sur‐
vey conducted by the authors in November 2008 and October
2009. The difference in the total cropland area in the NLCD
land use layer and the field layer was minimal, which indi‐
cates that there was not much of a temporal difference of
cropland from 2001 to 2009 in this watershed (table 3). How‐
ever, the three LULC data sources produced different esti‐
mates of total area in each land use category (table 3) as well
as spatial location of land uses (fig. 5). For example, figure�5
shows that a field identified as grain sorghum (GRSG) by the
field reconnaissance was identified largely as rangeland
(RNGE) by NASS and general agriculture (AGRL) by
NLCD. Similar disagreement was observed at numerous
locations in the study watershed. As a result, over the wa‐
tershed as a whole, NASS underestimated cropland by 1076
ha relative to field reconnaissance and overestimated range‐
land by a similar area (1109 ha) (table 3).

SWAT parameters ALPHA_BF, EPCO, and ESCO were
adjusted from the default SWAT parameters for all the scenar‐
ios in this study. ALPHA_BF was set to 0.028 based on the
baseflow filter program (Arnold and Allen, 1999; Nathan and
McMahon, 1990), while EPCO of 0.8 and ESCO of 0.2 were
used based on experience in a nearby watershed (Gali, 2010).

REPRESENTATION OF HYDROLOGCIAL RESPONSE UNITS

(HRUS)
HRUs in SWAT do not have spatial reference. However,

this limitation was overcome by redefining the topographic,
soil, and land use thresholds to 0%, which retained all com‐
binations of topography, soil, and land use in the model out‐
put and allowed reconnection of HRU output back to its
original position in the landscape (Gitau et al., 2006). Anoth-
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Figure 5. Land use/land cover classifications (field reconnaissance, NASS, and NLCD) for Black Kettle Creek watershed.

Table 3. Characteristics of field reconnaissance, NASS, and NLCD
land use/land cover data for Black Kettle Creek watershed.

Land Use
Category

SWAT
Abbreviation

Land Use Data Source

Field
(ha)

NASS
(ha)

NLCD
(ha)

Winter wheat WWHT 4529 3917 0
Soybean SOYB 609 518 0

Grain sorghum GSRG 801 424 0
Corn CORN 210 197 0

General agriculture AGRL, AGRR 1 18 6060

Sum of cropland ‐‐ 6149 5073 6060

Rangeland RNGE 685 1794 912
Forest FRSD 156 166 157

Forested wetlands WETF 26 10 30
CRP CRPP[a] 25 0 0

Alfalfa ALFA 23 0 0
Grassed waterway GRWY[a] 72 0 0

Urban URLD, URMD, URHD 658 733 604
Water WATR 2 18 30

[a] Created crop parameters in land cover/plant growth database.

er method was used by Ghebremichael et al. (2010), who de‐
fined HRUs according to field boundaries to maintain the
spatial location of crop fields. In contrast to the Ghebremi‐
chael et al. (2010) approach, this study set the topographic,
soil, and land use thresholds to 0% so that all slope, soil, and
land use combinations in the watershed were captured and

Table 4. Source data used for each modeled scenario.

Scenario
No. of
HRUs

No. of
Sub‐

basins

Source Data Designations

Soils[a]
Topo‐

graphy[b]
Land
Use[c]

Land
Mgmt.[d]

Tillage
Mgmt.[e]

0 1456 9 S 10 F T R
1 1112 7 S 30 F T R
2 1169 9 S 10 F N C
3 1133 9 S 10 A N C
4 800 9 S 10 L N C
5 319 9 O 10 F N C
6 344 9 O 10 A N C
7 216 9 O 10 L N C
8 1338 9 S 10 F T C
9 1292 9 S 10 F N R

[a] S = SSURGO, and O = STATSGO.
[b] 10 = 10 m DEM, and 30 = 30 m DEM.
[c] F = field reconnaissance of land uses/crop types, A = NASS‐2008, 

and L = NLCD‐2001.
[d] T = digitized satellite image of terraced areas, and N = assume no

terraces.
[e] R = field reconnaissance of no‐till or high‐residue fields, contour

farming, and C = assume conventional tillage only.

then post‐processed HRU results to represent field‐level re‐
sults, as described below. A summary of input data sources
used in each modeled scenario is presented in table 4. The
number of HRUs varied from 1456 to 216 depending on the
scenario (table 4).
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REPRESENTATION OF CONSERVATION PRACTICES IN SWAT
The fields with conservation practices (e.g., terraces, con‐

tour farming, no‐till) were identified from either the field re‐
connaissance survey or analysis of the digital ortho imagery
(KGS, 2002; USDA‐NRCS, 2004). Combinations of land
cover, conservation structures, and tillage practices
(e.g.,�wheat  crop with terraces and conventional tillage) were
created in the SWAT database by copying the data from its
original land cover (e.g., wheat) and assigning a new land
cover name (e.g., wheat with terrace) and crop code (CPNM)
(e.g., TWHT). The terrace structural practice (12% of crop‐
land area), assumed to be coupled with contour farming, was
simulated by reducing the curve number (CN) by six units
(USDA‐SCS, 1972; Neitsch et al., 2005; Arabi et al., 2008)
and reducing USLE practice factor values to 0.1 (Wischmeier
and Smith, 1978; Arabi et al., 2008). The contour farming
practice alone (0.02% of cropland area) was simulated by re‐
ducing the CN by five units and reducing USLE practice fac‐
tor values to 0.5 (Arabi et al., 2008). The no‐tillage or residue
management  practice (5% of cropland area; no overlap with
terrace practice fields) was simulated by reducing the CN by
two units (Arabi et al., 2008) and increasing Manning's
roughness coefficient for overland flow (OV_N) to 0.14 for
no residue, to 0.20 for 0.5 to 1.0 Mg ha‐1 residue, and to 0.30
for 2 to 9 Mg ha‐1 residue (Neitsch et al., 2005; Arabi et al.,
2008). Arabi et al. (2008) used a procedure that adjusted the
USLE practice factor (USLE_P) and minimum USLE cover
factor (USLE_C0) to incorporate the impact of residue bio‐
mass on erosion and transport of nutrients from upland areas
because the current version of SWAT does not incorporate the
impact of residue biomass on erosion. The residue biomass
left on the surface in all no‐till fields was assumed to be
500�kg ha‐1 (Arabi et al., 2008), based on experience by the
authors in the study watershed.

The baseline scenario (scenario 0, table 4) represented the
best resolution and most accurate data available from each
source: HRU slopes from 10 m × 10 m DEM data, soil dis‐
tribution and characteristics from the SSURGO database,
land use and crop types from the field reconnaissance data,
structural land management (terrace) locations by the digital
ortho imagery, and tillage management practices (no‐till,
contour farming) from the field reconnaissance data. Other
scenarios were developed by varying the input data source,
as shown in table 4, and comparing the output results.

Daily precipitation data for the watershed were obtained
from the Hesston weather station (Harvey County) located
about 10 km northeast of the watershed and the Goessel
weather station (McPherson County) located about 15 km
east of the watershed. Temperature, solar radiation, wind
speed, and relative humidity data were obtained from the
Newton (Harvey County) weather station located about
25�km south of the watershed. Missing data were adjusted by
using SWAT's weather generator. Each SWAT scenario was
simulated for the period from 1992 to 2009 (18 years). Annu‐
al average precipitation and temperature over the study peri‐
od were 795 mm (31.2 in.) and 13.9°C (57°F). Data from
2006 to 2009 were used for model validation, and data from
1995 to 2006 (12 years) were used for all field targeting anal‐
yses. The HRU, Subbasin, and Reach outputs files were ex‐
ported and written as tables in the Access database
(SWATOutput.mdb).

MODEL VALIDATION
Modeled streamflow for the baseline condition and se‐

lected scenarios was evaluated using measured flow data col‐
lected from 1 January 2006 to 31 July 2009 at the outlet of
Black Kettle Creek watershed. Stream stage was recorded at
15 min intervals using an automated stage recorder (6700 wa‐
ter sampler, 730 bubbler flow module, Isco, Inc., Lincoln,
Neb.) and averaged for each 24 h period (midnight to mid‐
night). Average daily water depth was used with surveyed
stream cross‐sectional area, surveyed longitudinal channel
slope, and estimated channel roughness coefficient (Cowan,
1956) to estimate average daily streamflow using Manning's
equation (Grant and Dawson, 2001).

The statistical parameters used to evaluate the relation‐
ship between the observed and simulated streamflow were
coefficient of determination (R2), Nash‐Sutcliffe model effi‐
ciency (NSE) (Nash and Sutcliffe, 1970), and percent bias
(PBIAS), as recommended by Moriasi et al. (2007). The R2

value indicates the consistency with which measured versus
predicted values follow a best fit line, with 1.0 being optimal
(Santhi et al., 2001). The NSE has been widely used to evalu‐
ate the performance of hydrologic models (Wilcox et al.,
1990; Mankin et al., 2002; Gassman et al., 2007; Parajuli et
al., 2009; Douglas‐Mankin et al., 2010). The NSE value can
range from 1 to -∞, where a value of 1 indicates perfect mod‐
el fit. PBIAS measures the average tendency of the simulated
data to be larger or smaller than their observed counterparts.
The optimal value of PBIAS is 0.0%, with positive values in‐
dicating model underestimation bias and negative values in‐
dicating model overestimation bias (Gupta et al., 1999).

For the baseline (scenario 0), the model agreement with
observed flow data was satisfactory to good for monthly sta‐
tistics of R2 (0.75), NSE (0.66), and PBIAS (‐18.1%)
(table�5) using performance ratings proposed by Moriasi et
al. (2007). The annual average observed and simulated flows
were also in good agreement. For the other selected scenar‐
ios, the model agreement with monthly observed flow data
was satisfactory based on NSE (0.50 to 0.65) but more vari‐
able based on PBIAS (very good for two scenarios <±10%,
good for one scenario <±15%, satisfactory for one scenario
<±25%, and unsatisfactory for two scenarios) depending on

Table 5. Monthly model validation statistics for selected scenarios.

Scenario[a] R2 NSE
PBIAS

(%)

Annual
Avg. Flow

(m3 s‐1)

Observed ‐‐ ‐‐ ‐‐ 0.29

0 0.75 0.66 ‐18.1 0.30
2 0.68 0.64 ‐6.9 0.31
3 0.55 0.48 ‐12.4 0.34
4 0.59 0.52 ‐3.0 0.31
5 0.62 0.60 ‐24.6 0.36
6 0.53 0.45 ‐31.8 0.38
7 0.56 0.48 ‐26.1 0.39

[a] 0 = S10FTR, 1 = S30FTR, 2 = S10FNC, 3 = S10ANC, 4 = S10LNC, 
5 = O10FNC, 6 = O10ANC, 7 = O10LNC, 8 = S10FTC, 9 = S10FNR,
where S = SSURGO, O = STATSGO, 10 = 10 m DEM, 30 = 30 m
DEM, F = field reconnaissance of land uses/crop types, A =
NASS‐2008, L = NLCD‐2001, T = digitized satellite image of
terraced areas, N = assume no terraces, R = field reconnaissance of
no‐till or high residue fields, and C = assume conventional tillage
only.
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the modeling scenario (table 5). The annual average observed
and simulated flows for other scenarios were in close agree‐
ment. Further detailed calibration was not done in this study
to avoid site‐specific empiricism and bias of parameters, as
the goal of this study was to compare different scenarios with
different data sources.

Stream sediment data were not available for calibration.
Model results were validated using published measurements
of sediment yields from small cropland drainage areas in
Kansas (Holland, 1971). According to Holland, cropland
areas in the Black Kettle Creek watershed area had sediment
yields ranging from 2.78 to 5.86 Mg ha‐1 year‐1 (1.24 to
2.48�ton acre‐1 year‐1). Before 1971, typical cropland areas in
this region had minimal implementation of conservation
practices and few terraces. Modeling results for the top
25�fields, also with no conservation practices or terraces,
ranged from 2.83 to 5.50  Mg ha‐1 year‐1 (1.26 to 2.45 ton
acre‐1 year‐1), in good agreement with measured sediment
yields. Further sediment calibration was not considered to be
warranted for this study.

TOOL TO MAP HRU OUTPUT TO FIELD BOUNDARIES
To identify specific fields for targeting, the SWAT HRU

output had to be mapped to the actual field boundaries. Con‐
verting SWAT HRU output to field‐level results and identify‐
ing the fields that produced the greatest sediment yields
involved several steps after running SWAT: (1) calculate av‐
erage annual sediment for HRUs from SWATOutput tables,
(2) join to FullHRU shapefile, (3) process FullHRU shape‐
file, (4) convert FullHRU shapefile to Grid, and (5) use zonal
statistics to get pollutant yields for each field. These steps are
time consuming and labor intensive. Therefore, an ArcGIS‐
based SWAT Targeting Toolbar (fig. 6) was developed with

Figure 6. Overview of SWAT targeting toolbar.

ArcGIS‐Visual Basic to post‐process the SWAT output and
prepare maps of sediment, total phosphorus, and total nitro‐
gen yields for a user‐defined land‐area boundary. The toolbar
was divided into two menu items: the SWAT Output Process‐
ing tool, and the Watershed Targeting tool.

The SWAT Output Processing menu opened the Excel
spreadsheet‐based SWAT Output Processing tool. This tool
read the SWAT output tables that were stored in an Access da‐
tabase (SWATOutput.mdb) and exported average annual sed‐
iment, total nitrogen, and total phosphorus yields for HRUs
and subbasins.

The Targeting menu opened the Watershed Targeting tool
that was built with Model Builder in the ArcGIS environ‐
ment. This tool needed output from the SWAT Output Proc‐
essing tool, FullHRU shapefile (generated in SWAT model
run), and boundary of interest (e.g., fields, subbasins, coun‐
ties). Once the inputs were satisfied, the tool produced maps
of area‐weighted average annual pollutant yields (sediment,
total phosphorus, and total nitrogen yields) for the user‐
defined boundary. In this study, the CLU field boundary sha‐
pefile was used. Because this project involved identifying
and targeting the fields producing the greatest sediment
yields, we used only the sediment‐yield analyses in this study.
Using these tools and procedures, area‐weighted average
annual sediment yields were developed for each field for
each scenario.

DATA RESOLUTION ASSESSMENT
The area within each CLU field boundary was calculated

using GIS. A substantial number of small parcels in the CLU
field boundary represented windbreaks, field borders,
grassed waterways, and other small (<1 acre) areas that were
less than a typical farm field‐management unit. Since the fo‐
cus of this study was on field‐level targeting, these sub‐field
units were not relevant. Therefore, a threshold of 0.4 ha
(1�acre) was applied, which reduced the number of field par‐
cels included in analyses for this study from 677 to 593.

For each modeling scenario, field‐scale sediment‐yield
density (Mg ha‐1) for each of 593 fields in the watershed was
ranked from high to low. We used four subsets of fields in this
ranking for comparison: the top 10% of fields (60 fields), top
20% of fields (118 fields), fields that summed to equal the top
10% of total field sediment yields (Mg), and fields that
summed to equal the top 20% of sediment yields. The number
of fields that contributed to the top 10% or 20% of sediment
yields varied by scenario. These methods were referred to as
the top 10% of fields, 20% of fields, 10% of yields, and 20%
of yields, respectively. The ranking thresholds selected in this
study were chosen for two reasons. First, project funding was
available to pay for management practices on about 10% to
20% of the watershed's land area. Second, previous studies
(Parajuli et al., 2008; Tuppad et al., 2010) have shown that the
benefit of targeting (relative to random placement) diminish‐
es substantially after practices have been implemented on the
“most critical” �20% of land area.

The individual fields identified as in the top percentage of
fields and top percentage of yields were compared among
modeling scenarios. Scenario 0, or S10FTR (abbreviations
described in table 4), was considered to be the baseline sce‐
nario because SSURGO soils data, 10 m DEM, field‐by‐field
land use reconnaissance assessment, and inclusion of terraces
and no‐till practices were considered to constitute the avail‐
able input data that best represented actual conditions of the
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watershed. Comparisons were conducted by spatially over‐
lapping two different scenarios in the GIS framework. For ex‐
ample, the shapefile of scenario 1 was overlapped with the
shapefile of scenario 0 to obtain a new shapefile that showed
fields that were in agreement between both scenarios.

The goal in this study was to identify the specific fields
that should be targeted for conservation practice imple‐
mentation and cost‐share funding. If a given scenario pro‐
duced a ranked list with the same fields as the comparison
scenario, it was considered to be in agreement. Agreement
between each pair of scenarios was assessed by reporting the
percentage of fields that appeared in corresponding ranked
subsets for both scenarios as a percentage of the number of
fields in the scenario that best represented actual conditions
(as stated above).

RESULTS AND DISCUSSION
IMPACT OF DATA SOURCE ON CHARACTERISTICS OF

TOP‐RANKED FIELDS

Source of soil, slope, land use, and land management data
impacted the field‐scale sediment yields simulated by SWAT,
and these changes were not uniform across fields in the study
watershed. In many cases, the ranking of field‐scale
sediment‐yield  densities (Mg ha‐1) changed as a result.

Characteristics  of the ten fields with the greatest field‐
scale sediment‐yield density for each scenario are summa‐
rized in table 6. Modeled HRUs within a field that were not
identified as cropland were labeled “noise.” Even scenarios
based on field reconnaissance LULC data (scenarios 0, 1, 2,
5, 8, and 9) had 1.1% to 3.0% of field area incorrectly mod‐
eled as non‐cropland (“noise”) area. The source of this noise
was in the conversion of the field reconnaissance data shape‐
file (based on CLU field boundaries) into raster format during
input to SWAT. Greater noise was observed in fields using
NLCD LULC data (scenario 4 with 7.2%; scenario 7 with
7.3%) and NASS LULC data (scenario 3 with 22.3%; scenar‐
io 6 with 28.6%). The NLCD and NASS data are already in
raster form when input to SWAT, so noise from these data are
directly caused by inaccurate land use assignment. The
NASS data included more detailed categories of LULC than
NLCD (table 2) but more often incorrectly identified crop‐

land as rangeland, which was the primary factor in causing
3 to 4 times more field area to be misclassified as cropland
for NASS than NLCD on the top sediment‐yielding fields
(table 6).

Use of STATSGO data (scenarios 5, 6, and 7) forced all
soils to have a K factor of 0.37 (table 2), so obviously the
same shift was observed in the top ten fields (table 6). Simi‐
larly, STATSGO data only contained hydrologic soil groups
C and D (table 2), so these soil groups also would be expected
to be more heavily represented in STATSGO scenarios. As a
result, hydrologic soil groups for the top ten fields consistent‐
ly shifted toward greater percentage of group C soils for the
STATSGO scenarios (5, 6, and 7), with 90% or more of the
targeted fields having group C soils compared to 80% in sce‐
nario 0 and 61% in the overall watershed (table 2).

Compared to corresponding scenarios based on field
LULC data (scenario 0) (table 6), use of NLCD LULC data
(scenario 4) had little influence on the percentage of field
area having a given K factor (e.g., area with K = 0.37 changed
from 85% to 84%), a small reduction in field area having
hydrologic soil groups C and D (e.g., area with group D
changed from 5% to 0%), and a large increase in the field area
with 2% to 4% and >4% slope classes (e.g., area with slope
>4% changed from 9% to 37%). The NLCD data resulted in
29% (scenario 7: STATSGO) and 37% (scenario 4: SSUR‐
GO) of the area of the top ten fields falling within the >4%
slope class, compared to 3.6% of the total watershed (table�3,
10 m DEM), which was much greater than any other scenario
(table 6). We conclude that the net result of the use of NLCD
data was the increasing importance of non‐land‐use factors
for field selection.

Use of NASS LULC data (scenario 3) had almost the op‐
posite effect of NLCD data (scenario 4). These data increased
the K factor to 0.37 for almost all targeted field areas, shifted
about 5% of both B and C group soils to hydrologic soil group
D, and decreased the field areas with >4% slope classes
compared to corresponding scenarios based on field LULC
data (scenario 0) (table 6). From a process perspective, the
impact of the incorrect classifications of cropland as pasture
decreased the influence of LULC on the highest ranked
sediment‐yielding  fields and led to greater influence of soil
factors (greater area of high K factor and hydrologic soil

Table 6. Average characteristics for top 10 sediment‐yielding fields from each scenario. 
HRUs within a field that were not identified as cropland were labeled “noise.”

Scenario[a]

Avg. No.
of HRUs
per field

Total
Ten‐Field
Area (m2)

Noise
Area
(m2)

Noise
(%)

Average
Slope
(%)

Slope[b]

(%)
Hydrologic

Soil Group[b]
USLE

K Factor[b]

0‐2 2‐4 4‐10 B C D 0.32 0.37

0 13 236,116 2,652 1.1 2.5 66 25 9 15 80 5 15 85
1 11 117,009 3,542 3.0 2.2 65 30 4 17 78 6 15 85
2 17 101,172 1,735 1.7 2.5 58 35 7 19 72 9 15 85
3 15 175,215 39,076 22.3 2.4 75 24 2 11 75 14 1 99
4 12 47,711 3,455 7.2 3.0 23 43 37 24 76 0 16 84
5 12 134,224 2,326 1.7 2.7 48 38 14 0 90 10 0 100
6 12 202,800 57,932 28.6 2.4 69 28 3 0 97 3 0 100
7 8 66,337 4,825 7.3 3.2 26 45 29 0 100 0 0 100
8 16 123,559 2,167 1.8 2.3 89 33 5 15 45 40 15 85
9 18 181,652 3,308 1.8 2.7 55 38 7 25 52 24 25 76

[a] 0 = S10FTR, 1 = S30FTR, 2 = S10FNC, 3 = S10ANC, 4 = S10LNC, 5 = O10FNC, 6 = O10ANC, 7 = O10LNC, 8 = S10FTC, and 9 = S10FNR, 
where S = SSURGO, O = STATSGO, 10 = 10 m DEM, 30 = 30 m DEM, F = field reconnaissance of land uses/crop types, A = NASS‐2008, L =
NLCD‐2001, T = digitized satellite image of terraced areas, N = assume no terraces, R = field reconnaissance of no‐till or high residue fields, and C
= assume conventional tillage only.

[b] Percent of total ten‐field area in slope, hydrologic soil group, or K‐factor category for a given scenario.
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Figure 7. Top 10% and 20% of watershed fields and sediment yield for the baseline scenario 0.

Figure 8. Fields identified as contributing to the top 20% of watershed sediment yields for the scenarios 0 through 9.
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Table 7. Number, percentage of watershed area, and
percentage of sediment yields of fields included in
each ranking method for each modeled scenario.

Scenario[a]

Ranking Method[b]

10%Y 20%Y 10%F 20%F

Number 0 14 25 60 118
of fields 1 16 26 60 118

2 17 29 60 118
3 11 25 60 118

4 (AGRR) 45 82 60 118
4 (WWHT) 46 81 60 118

5 15 27 60 118
6 10 20 60 118

7 (AGRR) 37 75 60 118
7 (WWHT) 39 79 60 118

8 15 27 60 118
9 12 22 60 118

Area 0 2.5 5.4 12.3 20.0
(% of 1 3.1 5.8 12.4 22.0

watershed) 2 2.6 6.0 13.5 23.6
3 2.6 6.4 13.6 25.7

4 (AGRR) 5.2 11.9 7.2 19.8
4 (WWHT) 5.2 11.9 8.2 18.3

5 2.2 4.9 13.2 23.4
6 2.6 5.5 14.5 24.9

7 (AGRR) 4.2 10.0 7.2 17.6
7 (WWHT) 4.4 10.7 7.1 16.9

8 2.0 4.7 12.5 21.0
9 3.0 5.2 14.8 23.5

Sediment 0 10 20 40.5 50.0
yield 1 10 20 38.4 52.4

(% of total) 2 10 20 38.9 58.0
3 10 20 33.7 48.2

4 (AGRR) 10 20 13.3 31.3
4 (WWHT) 10 20 13.7 28.5

5 10 20 42.0 61.9
6 10 20 39.1 52.9

7 (AGRR) 10 20 15.2 30.0
7 (WWHT) 10 20 15.6 31.2

8 10 20 42.0 56.5
9 10 20 41.5 57.9

[a] 0 = S10FTR, 1 = S30FTR, 2 = S10FNC, 3 = S10ANC, 4 = S10LNC, 
5 = O10FNC, 6 = O10ANC, 7 = O10LNC, 8 = S10FTC, 9 = S10FNR,
where S = SSURGO, O = STATSGO, 10 = 10 m DEM, 30 = 30 m
DEM, F = field reconnaissance of land uses/crop types, A =
NASS‐2008, L = NLCD‐2001, T = digitized satellite image of
terraced areas, N = assume no terraces, R = field reconnaissance of
no‐till or high‐residue fields, and C = assume conventional tillage
only; AGRR = general row crop for all cropland, and WWHT =
winter wheat for all cropland.

[b] 10%Y (20%Y) = fields with top 10% (20%) of watershed sediment
yield (Mg) ranked by field sediment‐yield density (Mg ha‐1), and
10%F (20%F) = top 10% (20%) of fields ranked by field sediment‐
yield density.

group D) on the ranking. For example, the top ten sediment‐
yielding fields in scenario 0, none of which contained pas‐
ture, were found to average 30.7% pasture area (range of 25
to 36%) based on NASS data used in scenario 3. By compari‐
son, the top ten sediment‐yielding fields in scenario 3, again
based on NASS data, averaged 12.5% pasture area, but
ranged from 0% to 31%. The reduced percentage of cropland
area in scenario 3 fields led to the greater importance of soil
factors in contributing to simulated sediment yield in the top‐
ranked fields.

IMPACT OF DATA SOURCE ON FIELD SEDIMENT‐YIELD RANK
Output maps showing the top 10% and 20% of fields and

the top 10% and 20% of yields were prepared with GIS for all
modeling scenarios. Examples in figure 7 show maps of the
top 10% and 20% of fields and yields for scenario 0 (base‐
line). The number of fields, percentage of total area, and spa‐
tial location of fields in the watershed varied between
scenarios and methods (by field and by yield) (table 7). De‐
pending upon the data source scenario, different fields were
identified as the greatest sediment yielders, as demonstrated
in figure 8 for the top 20% of sediment yields for all scenar‐
ios.

Depending upon the scenario, the top 10% of ranked fields
(10%F; 60 fields) represented 7.2% to 14.8% of the total wa‐
tershed area, and the top 20% of fields (20%F; 118 fields) rep‐
resented 17.6% to 25.7% of the total watershed area (table 7).
Comparing the different scenarios for the same number of
fields revealed that more area was accumulated for the top 60
or 118 fields when the highest‐ranked fields were larger, as
would be expected.

The number of fields required to accumulate a given
threshold of the total sediment yield for all fields in the wa‐
tershed varied by scenario (table 7). The top 10% of sediment
yield (10%Y) was simulated to come from as few as ten fields
(scenario 6, O10ANC) and as many as 45 fields (scenario 4,
S10LNC) and from as little as 2.0% of the watershed area
(scenario 8, S10FTC) to as much as 5.2% (scenario 4). Esti‐
mates for the top 20% of yields ranged from 20 fields (scenar‐
io 6) to 82 fields (scenario 4) and from 4.7% of the watershed
area (scenario 8) to 11.9% (scenario 4). The percentage of to‐
tal watershed sediment yield from the top‐ranked fields also
varied among scenarios (table 7). For example, the top 10%
of sediment‐yielding fields generated as little as 13.3% (sce‐
nario 4, S10LNC) to as much as 42.0% (scenario 5, O10FNC;
and scenario 8, S10FTC) of the total field‐scale sediment
yield in the watershed.

The two scenarios using the NLCD LULC data (scenar‐
ios�4 and 7) required more fields to accumulate the 10% and
20% yield thresholds and accumulated a smaller percentage
of the watershed area in the top 10% and 20% of fields
compared to other scenarios (table 7). The NLCD coverage
assigned all cropland to a single land use category, in this case
general agriculture (AGRR; table 3), which assigned param‐
eters according to a typical summer crop (Neitsch et al.,
2005). This forced the NLCD scenarios (4 and 7) to model the
fields that actually grew winter wheat (WWHT) as AGRR,
which has a greater USLE Cmin factor (0.2 for AGRR vs. 0.02
for WWHT) and a different crop phenological cycle (summer
vs. winter growing season). In this watershed, winter wheat
fields were smaller (mean area 13 ha) than other crop fields
(mean area 20 ha). Even though winter wheat land would
have been expected to have less contribution to erosion than
summer cropland, the small winter wheat fields were mod‐
eled to have a greater Cmin factor and thus greater sediment
yields. Greater inclusion of these fields increased the number
of smaller fields included in the top‐ranked sediment‐
yielding fields.

To test the impact of the default crop assignment by
NLCD, we ran additional scenarios identical to scenarios 4
and 7 except that all NLCD cropland was assigned parame‐
ters consistent with WWHT. The number of fields in each
ranking method changed only minimally (table 7), and the
specific fields identified between the two methods were
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largely in agreement (e.g., 78% agreement in fields identified
in the top 20% of sediment yields).

The results summarized in table 7 demonstrate a fairly
consistent relationship among the top‐ranked fields (with the
greatest sediment‐yield densities) between the number of
fields and the percentage of watershed area covered by those
fields. For the top 118 sediment‐yielding fields analyzed in
this study (table 7), the relationship was linear, with a slope
(expressed as fields per percentage of total watershed area)
ranging from 4.6 to 6.9 and averaging 5.6 fields per percent‐
age for eight of the ten scenarios. For model results using the
NLCD data, however, slopes were much greater for both sce‐
nario 4 (9.3 fields per percentage) and scenario 7 (10.4 fields
per percentage), because of the greater inclusion of WWHT
fields, as discussed above. This indicates that all data sources,
except NLCD, were fairly consistent in describing the rela‐
tive distribution of sediment yields within the watershed.

The spatial distribution of top sediment‐yielding fields
was variable among the scenarios (fig. 8). Targeted fields for
the baseline (scenario 0) were distributed throughout the wa‐
tershed. This suggests that a dispersed targeted approach
(Diebel et al., 2008), in which fields are targeted by specific
characteristics  but may be dispersed throughout the wa‐
tershed, would be most effective for targeting fields for BMP
implementation.  This is contrary to the conclusions of Diebel
et al. (2008), who suggested greater efficiency from an aggre‐
gated targeted approach, in which fields are targeted by spe‐
cific characteristics but may be aggregated only from within
a specific subwatershed. Although the aggregated approach
might lead to more dramatic, localized impact from a given
BMP implementation effort, results of this study show that it
would miss fields in other subwatersheds with greater
sediment‐yield  reduction potential.

IMPACT OF DATA SOURCE ON SPATIAL FIELD TARGETING
Some of the fields targeted by the baseline (scenario 0)

also appeared in many of the other scenarios (fig. 8), but
many did not. This study evaluated the importance of each
data source in determining the spatial location of fields with
the greatest sediment‐yield densities by determining the per‐
centage of agreement between paired scenarios in terms of
fields above a given threshold ranked by sediment‐yield den‐
sity.

Topography
Varying DEM data resolution from 10 m (scenario 0,

S10FTR) to 30 m (scenario 1, S30FTR) changed the top‐
ranked fields included in each analyzed subset (table 8).
Agreement ranged from 76% (for 20%Y) to 93% (for 10%F).
However, differences in identified fields were greater for the
top 14 to 25 fields (79% to 76%) than for the top 60 to
118�fields (93% to 90%). The relative lack of agreement for
the highest‐ranked fields probably related to the relative un‐
derestimation of fields in the highest slope class (>4%),
which have the greatest potential for erosion (table 1). Agree‐
ment between the 10 m and 30 m DEM scenarios was better
than for other input data categories tested (table 7), indicating
that 30 m resolution was adequate to capture the gently roll‐
ing topography of this watershed.

Soils
Changing the input soil dataset from SSURGO (scenarios

2, 3, or 4) to STATSGO (scenarios 5, 6, or 7) changed the top‐
ranked fields included in each analyzed subset (table 8).

Table 8. Targeting comparison: agreement of fields included in targeted
lists between rankings by four methods. Paired scenario comparisons

have different source data for only one category.

Test
Category

Scenario[a]

Agreement in Ranked
Fields (%)[b]

10%
Y

20%
Y

10%
F

20%
FFrom To

Topography 0 (10) 1 (30) 79 76 93 90

Soils 2 (S) 5 (O) 71 79 80 90
3 (S) 6 (O) 89 72 82 85
4 (S) 7 (O) 60 73 73 81

Land use 2 (F) 3 (A) 35 31 25 43
2 (F) 4 (L, AGRR) 60 59 40 58
2 (F) 4 (L, WWHT) 35 34 18 45

Crop type 4 (AGRR) 4 (WWHT) 72 78 72 82

Land 0 (TR) 8 (TC) 36 48 66 76
management 0 (TR) 9 (NR) 36 48 61 76

0 (TR) 2 (NC) 29 32 48 68
[a] 0 = S10FTR, 1 = S30FTR, 2 = S10FNC, 3 = S10ANC, 4 = S10LNC, 

5 = O10FNC, 6 = O10ANC, 7 = O10LNC, 8 = S10FTC, 9 = S10FNR,
where S = SSURGO, O = STATSGO, 10 = 10 m DEM, 30 = 30 m
DEM, F = field reconnaissance of land uses/crop types, A =
NASS‐2008, L = NLCD‐2001, T = digitized satellite image of
terraced areas, N = assume no terraces, R = field reconnaissance of
no‐till or high residue fields, and C = assume conventional tillage
only; AGRR = general row crop for all cropland, WWHT = winter
wheat for all cropland.

[b] 10%Y (20%Y) = fields with top 10% (20%) of watershed sediment
yield (Mg) ranked by field sediment‐yield density (Mg ha‐1), and
10%F (20%F) = top 10% (20%) of fields ranked by field sediment‐
yield density.

Agreement in field selection ranged from 60% (NLCD for
10%Y) to 90% (field for 20%F). Agreement tended to in‐
crease as the number of fields and targeted area included in
the subset being compared increased. Simulations using the
NLCD source data generally resulted in less agreement than
using NASS or field data because the greater uniformity of
LULC for the NLCD data reduced the influence of non‐soil‐
related factors and increased the influence of soil‐related fac‐
tors on the field rankings. This result implies an interactive
effect between soils and LULC in ranking fields by sediment‐
yield density.

In some scenarios, there was slightly less agreement be‐
tween results from different soil data sources than between
results from different topographic data sources. Generally,
however, the agreement was similar, ranging from about 75%
to 90% within the top 20% of ranked fields.

Land Use
Changing land use data source from field (scenario 2,

S10FNC) to NASS (scenario 3, S10ANC) or NLCD (scenar‐
io�4, S10LNC) had a major impact on field rankings (table 8).
Agreement with field scenario 2 was similar for NASS sce‐
nario 3 (25% to 43%) and NLCD scenario 4‐WWHT (18%
to 45%), and both were lower than NLCD scenario 4‐AGRR
(40% to 60%). In the case of NASS, the lower agreement was
influenced by fact that the NASS land cover data often classi‐
fied parcels of rangeland in the middle of agricultural fields
and also occasionally had rangeland in place of agricultural
crops. Greater agreement between scenario 2 (field) and sce‐
nario 4‐AGRR (NLCD) than for scenario 4‐WWHT (NLCD)
indicated that many of the targeted fields actually grew sum‐
mer crops, and imposing the WWHT crop type, with lower
Cmin, removed these fields from the top rankings and reduced
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agreement.  This can be observed more directly with the com‐
parison of scenario 4‐AGRR and scenario 4‐WWHT, which
showed that 18% to 28% of the fields from one ranking did
not agree with the other due to the change in crop designation
from summer row crop to winter wheat.

Agreement between the pairs of land use data source com‐
parisons ranged from 18% to 45% between scenario 2 (field)
and scenario 3 (NASS) or scenario 4‐WWHT (NLCD) and
from 40% to 60% between scenario 2 and scenario 4‐AGRR
(NLCD). For these land use cases, agreements were less than
for the topography and soil data source comparisons (ranging
from 60% to 93%), indicating that having accurate land use
designations was more critical than topography or soils in tar‐
geting the highest sediment‐yielding fields in this watershed.

Terraces and Tillage Management
Changing the land management data from inclusion of ter‐

races, contour farming, and tillage management (scenario 0,
S10FTR) to inclusion of only terraces (scenario 8, S10FTC),
only contour farming and tillage management (scenario 9,
S10FNR), or neither (scenario 2, S10FNC) had a major effect
on the top‐ranked fields included in each analyzed subset
(table 8). Agreement ranged from 29% (scenario 2 for 10%Y)
to 76% (either scenario 8 or 9 for 20%F).

These results confirmed the importance of including not
only land use but also current practice in identifying fields for
targeting. In this case, it is likely that inclusion in the model
of management practices that had already been implemented
on the fields with the greatest potential sediment‐yield densi‐
ties reduced sediment yields enough to remove many of those
fields from the highest ranked (i.e., targeted) subsets. For
many fields with the highest rankings in scenarios 2 though
7, modeling the implementation of terraces and/or contour
farming and no‐till resulted in sediment‐yield density reduc‐
tions adequate to remove those fields from the targeted list.
This provides support that these practices (identified by field
reconnaissance) appear to have been correctly placed in areas
that otherwise would have been high‐loss areas. Shifting
from baseline (scenario 0) to the combination of terraces,
contour farming, and no‐till (scenario 2) resulted in less
agreement in field selection than shifting to either terraces
(scenario 8) or contour farming and no‐till (scenario 9) alone.
This modeling result indicated that, in some cases, multiple
practices are needed to reduce sediment‐yield potential
enough to remove a field from the targeted list.

CONCLUSIONS
Agricultural fields with the greatest soil erosion potential

were identified using ArcSWAT. An ArcGIS toolbar was de‐
veloped to aggregate SWAT HRU output by field and prepare
maps of high‐priority fields by sediment, total nitrogen, and
total phosphorus yields, although only sediment‐yield rank‐
ings were assessed in this study.

The fields ranked by SWAT as having the greatest
sediment‐yield  densities (Mg ha‐1) changed with resolution
in topographic and soil data sources. Changing from 10 m to
30 m DEM topographic data and from STATSGO to SSUR‐
GO soil data altered the fields identified as yielding the most
sediment by about 10% to 25%, depending upon the areas of
the included fields as well as interactive effects with other in‐
put data sources.

Land use and management data source had the greatest in‐
fluence on fields identified as having the greatest sediment‐
yield densities. Changing from field reconnaissance to NASS
or NLCD land use data altered the fields selected as yielding
the most sediment by 40% to 70%. Changing just the man‐
agement data by including terraces and/or contour farming
and no‐till independently altered the selected fields by 25%
to 70%.

Results of this study clearly demonstrate that use of incor‐
rect or improper resolution source data can directly translate
into incorrect field‐level sediment‐yield ranking, and thus in‐
correct field targeting, when using SWAT. Fields with high
sediment‐yield  density in this study appeared to be most sen‐
sitive to land use data source (field reconnaissance, NASS, or
NLCD), followed closely by inclusion of land management
practices (terraces, contour farming, and no‐till). Both DEM
(10 m or 30 m) and soil (SSURGO or STATSGO) data source
also were very important, although to a lesser extent than oth‐
er inputs.
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